产品知识
    ·首页  >  产品知识   >  可控硅应用
可控硅应用
KGPF25-0_3-2_5型中频加热电源
 

      属于KGPF(S)系列中频加热电源中的一种,是一种静止变频装置,利用可控硅将三相工频交流电变成单相中频交流电来满足中频加热的需要(图2为其系统框图),对各种负载适应性强,被广泛应用于晶体生长、煅造、冶炼、精密铸造、热处理、焊接、弯管等领域。

1、主电路工作原理

      中频加热电源主电路(图3)的工作原理是将三相50Hz交流电经过三相全控整流桥V1~V6整流成电压可调的脉动直流,再通过平波电抗器G将脉动的直流电滤波变成光滑平稳的直流电送到单相逆变桥V7~V10,最后通过逆变桥将直流电变成单相中频交流电供给负载。负载部分是由感应加热线圈L及补偿中频电容器C组成的并联振荡电路。该电路对负载适应性强、运行稳定可靠。

Q

Q


      电源的输出频率是由LC并联振荡电路的谐振频率决定的。由于逆变桥的触发脉冲同步信号取自负载回路,所以在负载回路参数发生变化时,逆变桥输出频率也能相应变化,起到自动调频作用。该装置通过调节整流桥的触发角来改变整流桥的输出电压,达到调节电源的输出功率的目的。

2、控制电路

       由整流移相触发控制电路、逆变触发控制电路、电源和保护电路等几部分组成。这里只对整流移相触发控制电路和逆变触发控制电路进行介绍。

3、整流移相触发控制电路

      它由给定、电压反馈、电流反馈、综合放大、同步、移相触发、电压及电流限制和保护等几个单元电路组成。给定可以是手动电位器给定,也可以是由2604型智能温度控制仪自动给定。给定信号和反馈信号在综合放大单元经PI运算后,形成控制电压Uk。该控制电压在移相触发单元形成触发脉冲,再去控制可控硅的开通时刻,使整流桥输出可变直流电压。

      整流移相触发控制电路中的移相触发电路采用了TC787高性能可控硅三相移相触发集成电路。TC787是采用独有的先进IC工艺技术设计的单片集成电路,可单电源工作,亦可双电源工作,主要适用于三相可控硅移相触发和三相功率可控硅脉宽调制电路,以构成多种调速或变流装置。它具有功耗小、功能强、输入阻抗高、抗干扰性能好、移相范围宽、外接元件少等优点,而且装调方便、使用可靠。因此,TC787可广泛应用于三相半控、三相全控、三相过零等电力电子、机电一体化产品的移相触发系统,为提高整机寿命、缩小体积、降低成本提供了一种更加有效的新途径。

Q

      在TC787的内部(图4)集成有3个过零和极性检测单元、3个锯齿波形成单元、3个比较器、1个脉冲发生器、1个抗扰锁定电路、1个脉冲形成电路、1个脉冲分配器及驱动电路。其工作原理可简述为:经滤波后的三相同步电压通过过零和极性检测单元检测出零点和极性后,作为内部3个恒流源的控制信号;3个恒流源输出的恒值电流给3个等值电容Ca、Cb、Cc恒流充电,形成良好的等斜率锯齿波,锯齿波形成单元输出的锯齿波与控制电压Uk比较后取得相交点,该相交点经集成电路内部的抗干扰锁定电路锁定,保证相交唯一稳定,使相交点以后的锯齿波或移相电压的波动不影响输出;该相交信号与脉冲发生器输出的脉冲信号经脉冲形成电路处理后变为与三相同步信号相位相对应且与移相电压相适应的脉冲信号送到脉冲分配器及驱动电路;假设系统未发生过电流、过电压或其他非正常情况,则加在引脚5禁止端的信号为低电平时,脉冲封锁功能无效,此时脉冲分配电路根据用户在引脚6设定的状态完成双脉冲(引脚6为高电平)或单脉冲(引脚6为低电平)的分配功能,并经输出驱动电路功率放大后输出。

4、逆变触发控制电路

      逆变脉冲形成电路的同步信号取自中频电源负载的电压信号和电流信号的合成,从而保证了逆变桥输出频率的稳定,同时也起到自动调频的作用。设备在起动方式上采用电流调节跟踪式零压起动方式,简化了起动电路,运行操作简单方便。逆变触发整形电路采用集成电路555,具有高输入阻抗和比较强的输出电流能力,可驱动功放管进行触发脉冲放大,功放电路部分采用强触发电路。


      由于在开发设计中大量地采用集成电路(如TC787、555等),以及在起动方式上采用零压起动,使得控制电路更加简单,操作方便,设备体积减小,成本降低,并提高了设备整机寿命。

5、结束语

      KGPF25-0.3-2.5型中频加热电源运用了TC787等集成电路及零压启动方式,使得整个系统具有自动化程度高、可靠性高、控制精度高、宽范围的速度控制及温度控制调节等功能。
      KGPF25-0.3-2.5型中频加热电源经用户较长时间的使用验证,其运行效果良好,性能指标优异,完全满足用户的使用要求,并得到了用户的称赞。

 
并联逆变器中频感应炉
 

      可控硅中频电源在我国诞生于70年代,可控硅静止变频与旋转式机组变频相比,具有很多优点,因此,近三十年来可控硅中频电源在相当大的感应加热应用领域里代替了中频发电机组。占有不可抗拒的推陈出新的地位。传统的可控硅中频电源,其主要电路如图1所示。

      多年来我们以图1为基础,围绕高效、可靠、操作方便为目标,做了大量实验研究工作,诸如控制电路全集成化、零点压启动、微机控制代替集成系统等,使得以交流——支流——交流,并联逆变电路为框架的可控硅(晶闸管)中频电源具有一定特色。产品遍及全国各地,数量上也达到相当大的规模,很受用户欢迎。
      但多年实践,这种产品仍有一些复杂的问题围绕着我们。多为并联逆变电路的固有特征所造成的:
1、并联逆变电路流过感应器中的电流IL是有功电流La的Q倍。对于中频熔炼炉的Q=10——13,IL在感应器电阻r中产生的电损耗IL2r一般达到有功功率的30%左右。也就是说感应炉的电效率只能有70%左右,难以提高。
2、并联逆变器输出功率特征,由于负载参数变化的原因,必然出现功率凹角,且不可控制,使设备不能在全过程输出额定功率,降低了运行效率,增加了能源损耗。
3、并联逆变电路是强迫换向,且依赖于负载电压,加之不论是全集成化系统还是微机控制系统都是采用负载电压对每个半波进行步控制,在启动时或在通常运行时,都可能由于控制差异而出现换向失败,造成直通或者故障。
4、并联逆变电路要求恒流源输入,要求三相全控调压、平波电抗器的数值不能太大等。这样使三相输入电流变成方波,从而分解出三次及高次谐波,如图2;使三相输入线电压出现整流换向缺口,使中频电压Ucp至少有百分之几进入电抗器Ld前端,如图4。这些干扰都反馈到电网中去,给电网造成公害。
5、由于调节功率是通过三相全控整流电路的移相调压来实现,从而造成电网功率因数差,一般只能在0.8左右。
6、并联逆变电路的启动,在国家标准中是重点考核的技术指标,不论各制造厂家解决这个问题的深度如何,总说明,并联逆变电路的启动是一个问题存在,或启动较难,或因启动故障而影响正常的生产。

Q

Q

Q

Q

 
串联逆变器中频感应炉
 

      可控硅串联逆变器与并联逆变器相比,具有更多的优点:
1、串联逆变电路流经感应器中的电流IL接近有功电流,因此Il很小,由Il在感应器电阻中造成的电损耗很小,经理论计算及实验检测,感应炉的电效率可达97%之高,串联逆变器感应电炉可节电10%以上。

2、串联逆变电路,可以做到从冷料到浇铸,全过程都能保持满功率,大大提高了运行效率。熔化率最高。

3、串联逆变电路要求输入为恒压源,采用大电容量Cd滤波,首先使三相工频输入电流保持正弦波,而且中频电流在直流端全部被Cd旁路,串联逆变器的调功在逆变桥实现,可控整流a角均在零度,没有整流换相缺口,这样图2、图3、图4(见并联逆变器中频感应炉)所示干扰均消除,对电网无任何干扰。
4、三相整流桥在运行中a角均在零度。即直流电压均为最大值。大容量的cd直接并入直流端,自动将电网功率因数保持在0.97以上。
5、启动成功率100%,因流经逆变可控硅的电流为正弦波,所以不存在可控硅的开通与关断问题。即逆变不会换流失败,不存在启动问题。

Q

 
同步发动机自激恒压装置
 

      本装置的主要技术参数如下:
      同步变压器B1——220/40伏,2266/415匝;
      测量变压器B2——220/18伏,2266/198匝;
      脉冲变压器B3——150/150/150匝;
                    AG—— 交流发电机55千瓦,400/231伏,50赫,1000转/分;
      励磁电压:空载25伏,满载45伏;
      励磁电流:空载25安,满载45安;
      负载自空载至满载,电压调整率≤+-2%。

      凡容量在100千瓦以下,励磁电流在100安以下,励磁电压在180伏以下的交流同步电机均可采用这种可控硅自激恒压装置。

   Q

[ 打印  关闭 ]  

浙江正邦电力电子有限公司 版权所有 浙ICP备10049696号-1

热点新闻 | 加入正邦 | 联系我们 | 网络工商 |

浙公网安备 33112202000050号